325. Some Physical Properties of Tertiary Arsines.

By W. J. Jones, W. J. C. Dyke, G. Davies, D. C. Griffiths, and J. H. E. Webb.

Although a number of tertiary arsines have been prepared, their physical properties have not hitherto been co-ordinated. The lack of such correlation renders the investigation of these compounds more difficult, since recorded data afford little guidance as to the probable values of those physical constants that can be taken as criteria of purity. The data and relationships now given yield approximate values of boiling point under pressures usual in the purification of these substances, of density, and of refractive index. As illustrations of the use of these relationships, the following two instances may be cited. Employing the formulæ given in the later section on physical properties, the calculated constants for ethyldin -butylarsine are b. p. $90^{\circ} / 10 \mathrm{~mm}$., $d_{9^{\circ}}^{20^{\circ}} 0.9980$, and $n_{10}^{20^{\circ}} 1 \cdot 4742$, whilst direct measurements on the freshly purified substance give b. p. $93^{\circ} / 10 \mathrm{~mm}$., $d_{\mathrm{s}^{20}}{ }^{\circ} 0.9970$, and $n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 4730$. Again, when methyl-di-n-amylarsine is prepared from methyldihalogenoarsines and $n$-amyl Grignard reagent, it is accompanied by $n$-decane. The equation connecting the b . p . of a tri- $n$-alkylarsine with its molecular weight gives for methyldi- $n$-amylarsine the b. p. $103^{\circ} / 10 \mathrm{~mm}$. (obs., $104^{\circ} / 10 \mathrm{~mm}$.), whilst the b. p. of $n$-decane is $55^{\circ} / 10 \mathrm{~mm}$., a difference which would allow of effective separation of the two products by redistillation. Similar calculations proving the difficulty of separating certain arsines from accompanying hydrocarbon are given later.

The present work has involved the preparation of several mixed arsines by the interactions between various substituted arsenic halides and Grignard reagents. Yields refer to purified products and are expressed in g. per 12 g . of magnesium used in the experiment. Thermometric readings have been corrected for errors, and weighings for air displacement. Standard manometers and barometers were used in measuring pressure. The density and refractive index of each arsine were determined as soon as possible after its final purification by distillation. This was particularly necessary, since most of these compounds readily oxidised in contact with air.

[^0]rend., 1906, 142, 1151) and distilled before use (b. p. $140^{\circ} / 30 \mathrm{~mm}$.). Owing to the mildness of its interaction with the reagents, it was essential to use 4 mols. of the Mg compound to 1 of $\mathrm{AsMeI}_{2}$, and to reflux the mixture for at least 3 hrs.; otherwise, the final product was contaminated with unchanged $\mathrm{MeAsI}_{2}$. The proximity of the b . p. of the hydrocarbon present in the Grignard solution to that of the arsine demanded, in the case of an aliphatic compound, careful fractional redistillation for separation.

Methyldi-n-propylarsine (Found: C, 47.5; H, 9.7; As, 41.9. $\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{As}$ requires $\mathrm{C}, 47.7 ; \mathrm{H}, 9.7$; As, $42.6 \%$ ) was prepared by refluxing a mixture of $\mathrm{AsMeI}_{2}$ and $\mathrm{MgPr}^{a} \mathrm{Br}$ in ethereal solution, decomposing the product with $\mathrm{NH}_{4} \mathrm{Cl}$ aq., and fractionating the crude arsine under reduced press. (J., 1930, 2428). The purified arsine (yield, 17 g .) had b. p. $42^{\circ} / 10 \mathrm{~mm} ., 66^{\circ} / 34 \mathrm{~mm}$., $70^{\circ} / 42 \mathrm{~mm} ., d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0350, d_{4 \circ^{\circ}}^{2 \circ^{\circ}} 1 \cdot 0300$. The following derivatives were prepared by methods already described (J., 1931, 185). In this and subsequent cases, alcohol was used for crystallisation unless otherwise stated. Methyldi-npropylarsine mercurichloride (Found : Cl, 15•7. $\mathbf{C}_{7} \mathrm{H}_{17} \mathrm{As}, \mathrm{HgCl}_{2}$ requires Cl , $15 \cdot 8 \%$ ), separated from accompanying HgCl by recryst., forms white needles, m. p. $82^{\circ}$; dimethyldi-n-propylarsonium mercuri-iodide (Found : I, 49.2; Hg , $26 \cdot 0 . \mathrm{C}_{8} \mathrm{H}_{20} \mathrm{IAs}, \mathrm{HgI}_{2}$ requires $\mathrm{I}, 49 \cdot 3 ; \mathrm{Hg}, 26 \cdot 0 \%$ ), m. p. $95^{\circ}$, lemon-yellow prisms.

Methyldi-n-butylarsine (Found: C, 52.7; H, 10.4; As, 36.2. $\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{As}$ requires $\mathrm{C}, 52.9 ; \mathrm{H}, 10 \cdot 4$; As, $36.7 \%$ ), yield 20 g., has b. p. $77^{\circ} / 10 \mathrm{~mm}$., $d_{4}^{20^{\circ}} 1.0023$. The mercurichloride (Found: $\mathrm{Cl}, 14 \cdot 8 . \quad \mathrm{C}_{9} \mathrm{H}_{21} \mathrm{As}, \mathrm{HgCl}_{2}$ requires $\mathrm{Cl}, 14.9 \%$ ) forms bundles of prisms, m. p. $87^{\circ}$. Dimethyldi-n-butylarsonium iodide (Found : I, 36.6. $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{IAs}$ requires I, $\mathbf{3 6} \cdot 7 \%$ ), has $\mathrm{m} . \mathrm{p} .148^{\circ}$; its mercuri-iodide (Found : I, 47.4; Hg, 25.2. $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{IAs}, \mathrm{HgI}_{2}$ requires $\mathrm{I}, \mathbf{4 7 . 5}$; $\mathrm{Hg}, \mathbf{2 5} \cdot 1 \%$ ), after recryst., forms pale yellow needles, m. p. $68^{\circ}$.

The reaction between $\mathrm{AsMeI}_{2}$ and isobutylmagnesium bromide yielded 23 g . of purified methyldiisobutylarsine (Found : C, $52 \cdot 5$; H, $9.9 \%$ ); b. p. $57^{\circ} / 10 \mathrm{~mm}$., $81^{\circ} / 33 \mathrm{~mm}$., $d_{4^{20}}^{20^{\circ}} 1 \cdot 0019$. On treatment of the first runnings with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, 3 c.c. of $\beta \varepsilon$-dimethylhexane, b. p. $27^{\circ} / 33 \mathrm{~mm}$., were obtained. Methyldiisobutylarsine mercurichloride (Found : Cl, 14.8\%) forms flat needles, m. p. $123^{\circ}$. The methiodide, after being twice recryst. from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$, was obtained as short needles, m. p. $174^{\circ}$ (Dehn and Wilcox, Amer. Chem. J., 1906, 35, 18, give m. p. $155^{\circ}$ ).

Dimethyldiisobutylarsonium mercuri-iodide (Found: I, $\mathbf{4 7 \cdot 2}$; Hg, 25.2\%) crystallised as pale yellow needles, m. p. $93^{\circ}$.

Methyldi-n-amylarsine has b. p. $104^{\circ} / 10 \mathrm{~mm} ., 121^{\circ} / 21 \mathrm{~mm} ., 130^{\circ} / 33 \mathrm{~mm}$., and $d_{1^{\circ}}^{20{ }^{\circ}} 0.9810$ (Found: C, $56.5 ; \mathrm{H}, 10.6$; As, $32.0 . \mathrm{C}_{11} \mathrm{H}_{25} \mathrm{As}$ requires C , $56.9 ; \mathrm{H}, 10 \cdot 8$; As, $32.3 \%$ ) (yield, 20 g .) ; it is only partially miscible with abs. EtOH at $15^{\circ}$. In the isolation of the arsine, a first fraction containing 8 g . of $n$-decane, b. p. $80^{\circ} / 33 \mathrm{~mm}$., was obtained. Its mercurichloride (Found : $\mathrm{Cl}, 14 \cdot 0 . \quad \mathrm{C}_{11} \mathrm{H}_{25} \mathrm{As}, \mathrm{HgCl}_{2}$ requires $\mathrm{Cl}, 14 \cdot 1 \%$ ) forms white needles, m. p. $66^{\circ}$. Dimethyldi-n-amylarsonium iodide (Found: I, 33.7. $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{IAs}$ requires I , $33.9 \%$ ) is pptd. as an oil from an ethereal solution of its constituents. On separation from the mother-liquor, the oil rapidly crystallises, and after being kept in a vacuum for a month has m. p. 45-47 .

Methyldi-n-hexylarsine (Found : C, 59.7 ; H, 11.1; As, 28.4. $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{As}$ requires $\mathrm{C}, 60.0 ; \mathrm{H}, 11.2$; As, $28.8 \%$ ) is formed from $\mathrm{AsMeI}_{2}$ and $n$-hexylmagnesium bromide. There were obtained 11 g . of $n$-dodecane, b. p. $89^{\circ} /$ 10 mm ., and 29 g . of purified arsine, b. p. $134^{\circ} / 10 \mathrm{~mm}$., $d_{\mathrm{f}^{20}}^{20^{\circ}} 0.9662 ; n_{\mathrm{F}}^{20^{\circ}} 1-4792$;
$n_{\mathrm{D}}^{20^{\circ}} 1.4718 ; n_{\mathrm{C}}^{20^{0}} 1 \cdot 4688$. The arsine is not completely miscible with EtOH at $15^{\circ}$, but mixes freely with $\mathrm{Et}_{2} \mathrm{O}$ and with $\mathrm{C}_{6} \mathrm{H}_{6}$. The mercurichloride (Found: $\mathrm{Cl}, 13 \cdot 4 . \quad \mathrm{C}_{13} \mathrm{H}_{29} \mathrm{As}, \mathrm{HgCl}_{2}$ requires $\mathrm{Cl}, 13 \cdot 3 \%$ ) crystallises as aggregated flat needles, m. p. $56^{\circ}$.

Diarylmethylarsines.-A yield of 15 g . of purified dicyclohexylmethylarsine (Found: C, $61 \cdot 0 ; \mathrm{H}, 9.9$; As, 28.9 . $\mathrm{C}_{13} \mathrm{H}_{25}$ As requires C, $60 \cdot 9$; H, 9.8 ; As, $29.3 \%$ ) was obtained from $\mathrm{AsMeI}_{2}$ and cyclohexylmagnesium bromide in $\mathrm{Et}_{2} \mathrm{O}$. In order to separate the arsine from the accompanying dicyclohexyl, the product was fractionally distilled 3 times under low pressure. The arsine has b. p. $127^{\circ} / 4 \mathrm{~mm} ., 136^{\circ} / 10 \mathrm{~mm} ., d_{4^{20}}^{20^{\circ}} 1 \cdot 1151 ; n_{\mathrm{F}^{\circ}}^{20^{\circ}} 1.5385 ; n_{\mathrm{D}}^{20^{\circ}} 1.5300$; $n_{C}^{20^{\circ}} 1 \cdot 5265$. The mercurichloride (Found: $\mathrm{Cl}, 13 \cdot 4 . \quad \mathrm{C}_{13} \mathrm{H}_{25} \mathrm{As}, \mathrm{HgCl}_{2}$ requires $\mathrm{Cl}, 13 \cdot 4 \%$ ), m. p. $162^{\circ}$, forms a white cryst. powder. Dicyclohexyldimethylarsonium iodide (Found: I, 31.9. $\quad \mathrm{C}_{14} \mathrm{H}_{28} \mathrm{IAs}$ requires $\mathrm{I}, 31.9 \%$ ), recryst. from $\mathrm{H}_{2} \mathrm{O}$, forms white plates, m. p. $185^{\circ}$. The arsonium mercuri-iodide (Found: I, $44 \cdot 8 ; \mathrm{Hg}, 23 \cdot 3$. $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{IAs}, \mathrm{HgI}_{2}$ requires $\mathrm{I}, 44 \cdot 7 ; \mathrm{Hg}, 23 \cdot 5 \%$ ) crystallises as pale yellow needles, m. p. $149^{\circ}$.

The interaction between $\mathrm{AsMeI}_{2}$ and $p$-tolylmagnesium bromide in ether gives di-p-tolylmethylarsine (Found : C, 66.3; H, 6.3; As, 27.2. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{As}$ requires C, $66 \cdot 2$; H, $6 \cdot 3$; As, $27-5 \%$ ), b. p. $163^{\circ} / 6 \mathrm{~mm} ., 174^{\circ} / 10 \mathrm{~mm}$., $d_{4}^{20^{\circ}}$ $1.2011 ; n_{\mathrm{F}}^{20^{\circ}} 1.6269 ; n_{\mathrm{D}}^{20^{\circ}} 1.6097 ; n_{\mathrm{C}}^{20^{\circ}} 1 \cdot 6026$. Di-p-tolyl cryst. from the first runnings in the preliminary distillation. The liquid residue from these was added to the arsine fraction and the combined liquids were twice fractionally redistilled in a vacuum ; yield, 20 g . The mercurichloride (Found : Cl, 12•8. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{As}, \mathrm{HgCl}_{2}$ requires $\mathrm{Cl}, 13 \cdot 0 \%$ ), is a white powder, m. p. not sharp. The methiodide (Found: I, 30.8. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{IAs}$ requires I, $30.7 \%$ ) is slowly formed in cold $\mathrm{Et}_{2} \mathrm{O}$ from its components; recryst. from either $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{EtOH}-$ $\mathrm{Et}_{2} \mathrm{O}$, it forms prisms, m. p. $177^{\circ}$.

Obtained from the products of interaction of $\mathrm{AsMeI}_{2}$ with benzylmagnesium chloride, dibenzylmethylarsine (Found : C, 66.2; H, 6.1; As, 27.0. $\quad \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{As}$ requires C, $66.2 ; \mathrm{H}, 6.3$; As, $27.5 \%$ ) has b. p. $169^{\circ} / 5 \mathrm{~mm} ., 185^{\circ} / 10 \mathrm{~mm}$.; m. p. ca. $36^{\circ}$ (thermometer in liquid); $d_{4^{20}}^{20^{\circ}} 1.2101 ; n_{\mathrm{F}}^{20^{\circ}} 1.6333 ; n_{\mathrm{D}}^{20^{\circ}} 1.6156$; $n_{\mathrm{C}}^{20^{\circ}} 1.6083$; yield, 22 g . Similarly to tribenzylarsine (Challenger and Peters, J., 1929, 2617), this arsine yields $\mathrm{Ph} \cdot \mathrm{CHO}$ during its aerial oxidation. The mercurichloride (Found : Cl, 13.0. $\quad \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{As}, \mathrm{HgCl}_{2}$ requires $\mathrm{Cl}, 13 \cdot 0 \%$ ) crystallises as plates, m. p. $158^{\circ}$.

Di- $\beta$-phenylethylmethylarsine (Found : C, $68 \cdot 3 ; \mathrm{H}, 7 \cdot 1$; As, $24 \cdot 9 . \quad \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{As}$ requires $\mathrm{C}, 68.0 ; \mathrm{H}, 7.1$; As, $24.9 \%$ ) is prep. by the addition of $\mathrm{AsMeI}_{2}$ to $\beta$-phenylethylmagnesium bromide; yield, $16 \mathrm{~g} . ; \mathrm{b}$. p. $190^{\circ} / 4 \mathrm{~mm} ., 212^{\circ} /$ 10 mm .; $d_{4^{20}}^{20^{\circ}} 1 \cdot 1530 ; n_{\mathrm{F}^{20}}^{20^{\circ}} 1 \cdot 5985 ; n_{\mathrm{D}}^{20^{\circ}} 1.5843 ; n_{C}^{20^{\circ}} 1 \cdot 5785$. In the prep. there were also obtained 7 g . of PhEt , b. p. $136^{\circ}$, and 3 g . of $a \delta$-diphenylbutane, b. p. $316^{\circ} / 760 \mathrm{~mm}$. The arsine is sparingly sol. in EtOH, and possesses a pleasant odour resembling that of $\beta$-phenylethyl alcohol. The mercurichloride (Found: $\mathrm{Cl}, 12 \cdot 5 . \quad \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{As}, \mathrm{HgCl}_{2}$ requires $\mathrm{Cl}, 12 \cdot 4 \%$ ), almost insol. in EtOH , forms white needles, m. p. $165^{\circ}$, from glac. AcOH.

Di- $\beta$-phenylethyldimethylarsonium iodide (Found : I, 28.7. $\quad \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{IAs}$ requires $\mathrm{I}, \mathbf{2 8 . 7 \%}$ ), sparingly sol. in $\mathrm{H}_{2} \mathrm{O}$, cryst. as white plates, m. p. $151^{\circ}$.

Diphenylmethylarsine, prepared by the method of Burrows and Turner (J., 1920, 117, 1381) and carefully purified by fractional distillation in a vacuum, had $d_{1^{20}}^{20^{\circ}} 1-2710 ; n_{\mathrm{F}}^{20^{\circ}} 1 \cdot 6472 ; n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 6290 ; n_{\mathrm{C}}^{20^{\circ}} 1 \cdot 6215$.

Dimethylalkylarsines.-These compounds and the corresponding arylarsines were obtained from Grignard reagents ( 2 mols.) and $\mathrm{AsMe}_{2} \mathrm{I}$ ( 1 mol .)
(Burrows and Turner, loc. cit.), the latter having been redistilled immediately before use.

Dimethylethylarsine (Found: C, 35.9; H, 8-3. Calc. for $\mathrm{C}_{4} \mathrm{H}_{11}$ As: C , $35-8 ; \mathrm{H}, 8.3 \%$ ) was prep. using di-n-amyl ether as solvent (J., 1930, 2428). It was first prepared by Cahours (Annalen, 1862, 122, 219). It has b. p. $86^{\circ} / 760 \mathrm{~mm}$., $d_{4^{20}}^{2 \cdot} 1 \cdot 0990$, and forms a mercurichloride (Found : $\mathrm{Hg}, 49 \cdot 3$. $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{As}, \mathrm{HgCl}_{2}$ requires $\mathrm{Hg}, 49.5 \%$ ), separated from accompanying HgCl by filtration of the alc. solution, and recryst. from glac. AcOH; needles, m. p. $154^{\circ}$. Trimethylethylarsonium mercuri-iodide (Found: I, $53.0 ; \mathrm{Hg}, 27-7$. $\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{AsI}, \mathrm{HgI}_{2}$ requires I, $52-1 ; \mathrm{Hg}, 27.5 \%$ ) forms yellow needles, m. p. $92^{\circ}$.

With $n$-propylmagnesium bromide and $\mathrm{AsMe}_{\mathbf{2}} \mathrm{I}$ dissolved in $\mathrm{Et}_{2} \mathrm{O}$, dimethyl-n-propylarsine (Found : $\mathrm{C}, 40.8 ; \mathrm{H}, 8-9 . \mathrm{C}_{5} \mathrm{H}_{13} \mathrm{As}$ requires $\mathrm{C}, 40.5 ; \mathrm{H}$, $8.9 \%$ ) is obtained, b. p. $27^{\circ} / 17 \mathrm{~mm}$., $a_{4}^{20^{\circ}} 1.0221$. It forms a methiodide (Found : I, $43 \cdot 7 . \quad \mathrm{C}_{6} \mathrm{H}_{16}$ IAs requires I, $43 \cdot 8 \%$ ), m. p. $211^{\circ}$.

Dimethyl- $n$-butyl-, -n-amyl-, and -dl-amylarsines were formed in $\mathrm{Et}_{2} \mathrm{O}$ solution from $\mathrm{AsMe}_{2} \mathrm{I}$ and the Grignard reagents, but owing to the proximity of their b. p.'s to those of $n$-octane, $n$-decane, and $\gamma \zeta$-dimethyloctane, respectively, their separation could not be effected. The difficulty that arises in this method of preparation is indicated by the values of the $b$. p.'s of these arsines calc. by the formula given later; e.g., the b. p.'s ( 10 mm .) of the first two arsines are $35^{\circ}$ and $50^{\circ}$ respectively, whereas those of $n$-octane and $n$-decane are $20^{\circ}$ and $55^{\circ}$. The following derivatives were prepared directly from the ethereal solution of the arsine. Trimethyl-n-butylarsonium iodide (Found: I, 41.4. $\mathrm{C}_{7} \mathrm{H}_{18}$ IAs requires $\mathrm{I}, 41.7 \%$ ), m. p. $163^{\circ}$; the mercuriiodide (Found : I, $50.3 ; \mathrm{Hg}, 26 \cdot 1 . \mathrm{C}_{7} \mathrm{H}_{18} \mathrm{IAs}, \mathrm{HgT}_{2}$ requires $\mathrm{I}, 50 \cdot 2 ; \mathrm{Hg}$, $26 \cdot 4 \%$ ) forms yellow needles, m. p. $120^{\circ}$. Dimethyl-n-amylarsine mercurichloride (Found : $\mathrm{Cl}, 15 \cdot 6 ; \mathrm{Hg}, 45 \cdot 2 . \mathrm{C}_{7} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{AsHg}$ requires $\mathrm{Cl}, 15 \cdot 8 ; \mathrm{Hg}$, $44.8 \%$ ) forms rods, m. p. $87^{\circ}$, from glac. AcOH. Trimethyl-n-amylarsonium iodide (Found: C, 29.9 ; H, 6.2; I, 39.9. $\mathrm{C}_{8} \mathrm{H}_{20}$ IAs requires C, $30 \cdot 2$; H, 6.3 ; $\mathrm{I}, 39.9 \%$ ), recryst. from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$, forms fine needles, m. p. $172^{\circ}$; the cadmi-iodide (Found : $\mathrm{C}, 18 \cdot 7 ; \mathrm{H}, 3 \cdot 7 . \quad 2 \mathrm{C}_{8} \mathrm{H}_{20} \mathrm{IAs}, \mathrm{CdI}_{2}$ requires C, 19•2; $\mathrm{H}, 4.0 \%$ ), m. p. $186^{\circ}$ (from EtOH). Trimethyl-dl-amylarsonium iodide (Found : I, $40 \cdot 1 \%$ ) has m. p. ca. $145^{\circ}$.

Aryldimethylarsines.-A yield of 8 g . of purified cyclohexyldimethylarsine (Found : C, $51 \cdot 2$; H, 8.9 ; As, 39.8. $\mathrm{C}_{8} \mathrm{H}_{17}$ As requires C, $51 \cdot 0$; H, 9.1 ; As, $39 \cdot 9 \%$ ) was obtained from cyclohexylmagnesium bromide and $\mathrm{AsMe}_{2} \mathrm{I}$. The arsine has b. p. $65^{\circ} / 9 \mathrm{~mm}$., $d_{4^{20}}^{20^{\circ}} 1 \cdot 2390$. It catches fire when introduced into the air. Its methiodide (Found : I, 38-2. $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{IAs}$ requires I, 38.5\%) has m. p. $259^{\circ}$ (decomp.), needles from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$; cyclohexyltrimethylarsonium mercuri-iodide (Found: $\mathrm{I}, 48 \cdot 6 ; \mathrm{Hg}, 25 \cdot 4 . \quad \mathrm{C}_{9} \mathrm{H}_{20} \mathrm{I}_{8} \mathrm{AsHg}$ requires I , 48.5 ; $\mathrm{Hg}, \mathbf{2 5 . 6} \%$ ), m. p. $138^{\circ}$; the arsonium cadmi-iodide [Found: $\mathrm{C}, 20.9 ; \mathrm{H}$, $4 \cdot 2 ; \mathrm{Cd}, 11 \cdot 1 . \quad 2 \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{As}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{I}, \mathrm{CdI}_{2}$ requires $\mathrm{C}, 21 \cdot 1 ; \mathrm{H}, 3 \cdot 9 ; \mathrm{Cd}, 10 \cdot 9 \%$ ] m. p. $198^{\circ}$.
$p$-Dibromobenzene with Mg in $\mathrm{Et}_{2} \mathrm{O}$ gives $p$-bromophenylmagnesium bromide (Bodroux, Compt. rend., 1903, 136, 1138), which, on treatment with AsMe ${ }_{2} \mathrm{I}$, yields p-bromophenyldimethylarsine (Found: C, 36.4; H, 4.1; As, 28.5 . $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{BrAs}$ requires $\mathrm{C}, 36.8$; $\mathrm{H}, 3.9$; As, $28.7 \%$ ), b. p. $134-136^{\circ} /$ $9 \mathrm{~mm} ., d_{4}^{20 \cdot} \cdot 1 \cdot 5918$; yield of purified arsine, 15 g .

Addition of $\mathrm{AsMe}_{2} \mathrm{I}$ to o-tolylmagnesium bromide yielded 27 g . of purified o-tolyldimethylarsine (Found: C, $54 \cdot 8 ; \mathrm{H}, 6 \cdot 8$; As, $38 \cdot 4 . \quad \mathrm{C}_{9} \mathrm{H}_{13}$ As requires C, $55 \cdot 1 ; \mathrm{H}, 6.7$; As, $38 \cdot 2 \%$ ), b. p. $93^{\circ} / 10 \mathrm{~mm}$., $A_{4}^{20^{\circ}} 1 \cdot 1993 ; n_{\mathrm{H}}^{20^{\circ}} 1 \cdot 5833 ; n_{\mathrm{D}}^{20{ }^{\circ}}$
$1 \cdot 5690 ; n_{C}^{200^{\circ}} \quad 1 \cdot 5631$. o-Tolyldimethylarsine dibromide (Found: Br, 44.5. $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{As}$ requires $\mathrm{Br}, 44 \cdot 9 \%$ ), recryst. from anhyd. acetone, forms rhombs, m. p. 104 ${ }^{\circ}$. The hydroxybromide $\left[\right.$ Found : $\mathrm{Br}, 27 \cdot 4$. $\quad \mathrm{C}_{8} \mathrm{H}_{:} \cdot \mathrm{As}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{OH}) \mathrm{Br}$ requires $\mathrm{Br}, 27 \cdot 3 \%$ ] separates as rectangular prisms, m. p. $182^{\circ}$, when $\mathrm{H}_{2} \mathrm{O}$ EtOH solutions of the dibromide are concentrated. o-Tolyltrimethylarsonium iodide (Found : I, 37.3. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{IAs}$ requires $\mathrm{I}, \mathbf{3 7 . 6 \%}$ ) forms fibrous crystals, m. p. $290^{\circ}$; the cadmi-iodide [Found: C, 23.1; H, $3 \cdot 0$; I, $48 \cdot 4$; Cd, 11.4. $2 \mathrm{C}_{7} \mathrm{H}_{:} \cdot \mathrm{As}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{I}, \mathrm{CdI}_{2}$ requires $\mathrm{C}, 23.0 ; \mathrm{H}, 3 \cdot 1 ; \mathrm{I}, 48 \cdot 7 ; \mathrm{Cd}, 10 \cdot 8 \%$ ] white silky needles, m. p. $179^{\circ}$; the mercuri-iodide (Found: $1,48.2 ; \mathrm{Hg}, 25.6$. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{IAs}, \mathrm{HgI}_{2}$ requires $\mathrm{I}, 48 \cdot 1 ; \mathrm{Hg}, 25 \cdot 3 \%$ ) yellow needles, m. p. $164^{\circ}$.

Similarly obtained, m-tolyldimethylarsine (Found: C, 55.4 ; H, 6.9; As, $38 \cdot 2 \%$ ) has b. p. $88^{\circ} / 10 \mathrm{~mm} ., 115^{\circ} / 34 \mathrm{~mm}$.; $d_{4^{20}}^{20^{\circ}} 1 \cdot 1906 ; n_{\mathrm{F}^{20}}^{20^{\circ}} 1 \cdot 5792 ; n_{\mathrm{D}}^{21^{\circ}}$ 1.5645 ; $n_{\mathrm{C}}^{20^{\circ}} 1.5584$; yield, 24 g . Its dibromide (Found: Br, $44 \cdot 8 \%$ ) forms rectangular plates, m. p. $120^{\circ}$. m-Tolyltrimethylarsonium iodide (Found : T, $37.3 \%$ ) crystallises in cubic form, m. p. $240^{\circ}$; the cadmi-iodide, $2 \mathrm{C}_{\cdot} \mathrm{H}_{7} \cdot \mathrm{As}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{I}, \mathrm{CdI}_{2}$ (Found : I, $49 \cdot 0$; Cd, $10 \cdot 6 \%$ ), needles, m. p. $119^{\circ}$; the mercuri-iodide (Found : I, $\mathbf{4 8} \cdot \mathbf{1 ; ~ H g , ~ 2 5 . 6 \% )}$ ), silky yellow crystals, m. p. $127^{\circ}$.
m-Xylyldimethylarsine (Found: C, 56.7; H, 7.2; As, 35.7. $\mathrm{C}_{30} \mathrm{H}_{15} \mathrm{As}$ requires $\mathrm{C}, 57 \cdot 1 ; \mathrm{H}, 7 \cdot 2$; As, $35.7 \%$ ) (yield, 24 g .), from the products of interaction of the Grignard reagent derived from 4-bromo-m-xylene and $\mathrm{AsMe}_{2} \mathrm{I}$, has b. p. $101^{\circ} / 10 \mathrm{~mm}$., $113^{\circ} / 17 \mathrm{~mm}$.; $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 1928 ; n_{\mathrm{F}}^{20^{\circ}} 1.5793 ; n_{\mathrm{I}}^{21}$ $1 \cdot 5650 ; n_{\mathrm{C}}^{20^{\circ}} 1.5591$. Its methiodide (Found: I, 35.8. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{IAs}$ requires I, $36 \cdot 1 \%$ ) forms prisms, m. p. $203^{\circ}$; m-xylyltrimethylarsonium mercuri-iodide (Found : I, 47.6; Hg, 24.6. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{IAs}, \mathrm{HgCl}_{2}$ requires $\mathrm{I}, \mathbf{4 7 . 2}$; $\mathrm{Hg}, \mathbf{2 4 . 9 \%}$ ) yellow flakes, m. p. $108^{\circ}$.
p-Xylyldimethylarsine (Found : C, 56.7; H, 7.3; As, 35.7\%) was obtained similarly from bromo- $p$-xylene ; yield, 27 g .; b. p. $113^{\circ} / 7 \mathrm{~mm} ., 120^{\circ} / 10 \mathrm{~mm}$.; $d_{\mathrm{t}^{2}}^{20^{\circ}} 1 \cdot 1896 ; n_{\mathrm{F}^{20}}^{20^{\circ}} 1 \cdot 5813 ; n_{\mathrm{D}}^{20^{\circ}} 1.5670 ; n_{\mathrm{C}}^{20^{\circ}} 1.5611$. Its dibromide is hygroscopic and melts at $106^{\circ}$ (Found: $\mathrm{Br}, 42 \cdot 7 . \quad \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{As}$ requires $\mathrm{Br}, 43 \cdot 2 \%$ ). p -Xylyltrimethylarsonium iodide (Found : $\mathrm{I}, \mathbf{3 6 . 0} \%$ ) cryst. as plates, m. p. $223^{\circ}$; the mercuri-iodide (Found : I, $46.9 ; \mathrm{Hg}, 24 \cdot 8 \%$ ), stout yellow needles, m. p. $129^{\circ}$.
$\beta$-Phenylethyldimethylarsine (Found : C, 56.9; H, 7•2; As, 35.6. $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{As}$ requires $\mathrm{C}, 57 \cdot 1 ; \mathrm{H}, 7 \cdot 2$; As, $35 \cdot 7 \%$ ) is derived from $\beta$-bromo- $\alpha$-phenylethane. It has b. p. $103^{\circ} / 10 \mathrm{~mm} ., 119^{\circ} / 20 \mathrm{~mm}$.; $d_{4^{20}}{ }^{\circ} 1 \cdot 1621 ; n_{F}^{20^{\circ}} 1.5634$; $n_{\mathrm{D}}^{20^{\circ}} 1.5505 ; n_{0}^{20^{\circ}} 1.5452$. Yield, 15 g . The hydroxybromide [Found: Br, 25.9. $\mathrm{C}_{10} \mathrm{H}_{15} \cdot \mathrm{As}(\mathrm{OH}) \mathrm{Br}$ requires $\mathrm{Br}, 26 \cdot 0 \%$ ] has m. p. $118^{\circ}$ (from acetone); the methiodide (Found: I, 36.2. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{IAs}$ requires I, 36.2\%), m. p. $202^{\circ}$. $\beta$-Phenylethyltrimethylarsonium cadmi-iodide (Found: C, 25.0; H, 3.5; I, 47.2; $\mathrm{Cd}, 10 \cdot 7.2 \mathrm{C}_{11} \mathrm{H}_{18} \cdot \mathrm{AsI}^{2} \mathrm{CdI}_{2}$ requires $\mathrm{C}, 24 \cdot 7$; $\mathrm{H}, 3 \cdot 4 ; \mathrm{I}, 47 \cdot 4 ; \mathrm{Cd}$, $10.5 \%$ ) forms silvery needles, m. p. $158^{\circ}$. Two different mercuri-iodides were obtained from alc. solutions by varying the proportions of the components used. With equimol. proportion, $\beta$-phenylethyltrimethylarsonium mercuri-iodide (Found : $\mathrm{I}, 47 \cdot 1 ; \mathrm{Hg}, 24 \cdot 7 . \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{AsI}^{2} \mathrm{HgI}_{2}$ requires $\mathrm{I}, 47 \cdot 2$; $\mathrm{Hg}, 24.9 \%$ ) is obtained after recrystn. as yellow needles, m. p. $116^{\circ}$. From 2 mols. of methiodide to 1 of $\mathrm{HgI}_{2}$, bis $-\beta$-phenylethyltrimethylarsonium mercuriiodide (Found : $\mathrm{I}, 44.0 ; \mathrm{Hg}, 17.5 .2 \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{AsI}^{2}, \mathrm{HgI}_{2}$ requires $\mathrm{I}, 43.8 ; \mathrm{Hg}$, $17.3 \%$ ) (white needles) resulted; m. p. $155^{\circ}$ (recryst.).

Tri- $\beta$-phenylethylarsine (Found: C, 74.2; H, 6.7; As, 19.1. $\mathrm{C}_{24} \mathrm{H}_{2}$ : As requires $\mathrm{C}, 73 \cdot 8 ; \mathrm{H}, 7 \cdot 0$; $\mathrm{As}, 19 \cdot 2 \%$ ) also was prepared from $\mathrm{AsCl}_{3}$; yield,

12 g . It has b. p. $281^{\circ} / 10 \mathrm{~mm}$. ; $d_{1_{1}^{20}}{ }^{\circ} 1 \cdot 1545$. Its methiodide (Found: I, 23.8 . $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{IAs}$ requires $\mathrm{I}, 23.8 \%$ ), needles, has $\mathrm{m} . \mathrm{p} .115^{\circ}$; its metho-mercuri-iodide (Found : $\mathrm{I}, \mathbf{3 8 . 8} ; \mathrm{Hg}, 20.5 . \quad \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{IAs}, \mathrm{HgI}_{2}$ requires $\mathrm{I}, 38.6$; $\mathrm{Hg}, 20 \cdot 3 \%$ ), yellow needles, m. p. $90^{\circ}$; its dibromide (Found: $\mathrm{Br}, 29 \cdot 3$. $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{Br}_{2} \mathrm{As}$ requires $\mathrm{Br}, 29 \cdot 1 \%$ ) white plates from ether, m. p. $117^{\circ}$.

From the products of the interaction of $\beta$-naphthylmagnesium bromide with $\mathrm{AsMe}_{2} \mathrm{I}$, $\beta$-naphthyldimethylarsine (Found: C, 61.7; H, 5.7; As, 32.5. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{As}$ requires $\mathrm{C}, 62 \cdot 0 ; \mathrm{H}, 5 \cdot 6 ; \mathrm{As}, 32 \cdot 3 \%$ ) is isolated as a liquid, b. p. $177^{\circ} / 10 \mathrm{~mm}$.; $d_{+^{\circ}}^{20^{\circ}} 1.2995 ; n_{\mathrm{F}^{20}}{ }^{\circ} 1.6731 ; n_{\mathrm{D}}^{20^{\circ}} 1.6502 ; n_{\mathrm{C}}^{20} 1.6407$. The methiodide (Found : I, 34.2. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{IAs}$ requires I, $33 \cdot 9 \%$ ), fibrous crystals, has m. p. $251^{\circ}$ (decomp.); the methomercuri-iodide (Found: I, $46.5 ; \mathrm{Hg}, 24.5$. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{IAs}, \mathrm{HgI}_{2}$ requires $\mathrm{I}, 46 \cdot 0 ; \mathrm{Hg}, 24 \cdot 2 \%$ ) forms yellow needles, m. p. $154^{\circ}$.

Ethyldialkylarsines.-These compounds were prepared, similarly to the methylarsines, from $\operatorname{AsEtr}_{2}$ (McKenzie and Wood, J., 1920, 117, 408), which was redistilled before use (b. p. $160^{\circ} / 50 \mathrm{~mm}$.).

Ethyldi-n-butylarsine (Found: C, 54.7; H, 10.6; As, 34.6. $\mathrm{C}_{10} \mathrm{H}_{23} \mathrm{As}$ requires C, $55 \cdot 0$; H, $10 \cdot 6$; As, $34 \cdot 4 \%$ ), yield, 24 g ., has b. p. $93^{\circ} / 10 \mathrm{~mm}$., $120^{\circ} / 34 \mathrm{~mm} . ; d_{4^{\circ}}^{20^{\circ}} 0.9970 ; n_{\mathrm{F}}^{200^{\circ}} 1 \cdot 4801 ; n_{10}^{20^{\circ}} 1 \cdot 4730 ; n_{\mathrm{C}}^{20^{\circ}} 1 \cdot 4699$. Its aerial oxidation gives the oxide (Found : As, 32.2. $\mathrm{C}_{10} \mathrm{H}_{23} \mathrm{OAs}$ requires As, 32.0\%), which after recrystn. forms plates, m. p. $133^{\circ}$. The methiodide (Found : I, $35 \cdot 2$. $\quad \mathrm{C}_{11} \mathrm{H}_{26} \mathrm{IAs}$ requires $\mathrm{I}, 35 \cdot 2 \%$ ) crystallises as needles, m. p. $168^{\circ}$.

When added to $n$-amylmagnesium bromide, $\mathrm{AsEtI}_{2}$ gives ethyldi-n-amylarsine (Found : C, 58.7 ; H, 11.1; As, $30.5 . \mathrm{C}_{12} \mathrm{H}_{27} \mathrm{As}$ requires C, $58.5 ; \mathrm{H}$, $11 \cdot 1$; As, $30.5 \%$ ), yield, 28 g.; b. p. $119^{\circ} / 10 \mathrm{~mm} ., 152^{\circ} / 39 \mathrm{~mm}$.; $d_{4^{00}}^{20{ }^{\circ}} 0.9886$. The oxide (Found : As, $28.5 . \quad \mathrm{C}_{12} \mathrm{H}_{27} \mathrm{OAs}$ requires $\mathrm{As}, \mathbf{2 8 . 6 \%}$ ) forms plates, m. p. $74^{\circ}$.

There were also prepared dicyclohexylethylarsine (Found : C, $61 \cdot 6 ; \mathrm{H}, 10 \cdot 0$; As, 27.7. $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{As}$ requires $\mathrm{C}, \mathbf{6 2 \cdot 2} ; \mathrm{H}, \mathbf{1 0 \cdot 1}$; As, $27 \cdot 7 \%$ ), yield 15 g ., b. p. $161^{\circ} / 10 \mathrm{~mm} ., 183^{\circ} / 23 \mathrm{~mm}$.; and the methiodide (Found : $\mathrm{I}, 30 \cdot 8 . \quad \mathrm{C}_{15} \mathrm{H}_{30} \mathrm{IAs}$ requires I, $30 \cdot 8 \%$ ), needles, m. p. $135^{\circ}$.
n-Butyldialkylarsines.-Prepared from purified $n$-butyldichloroarsine (Quick and Adams, J. Amer. Chem. Soc., 1922, 44, 805), diethyl-n-butylarsine (Found : $\mathrm{C}, 50.7 ; \mathrm{H}, 10 \cdot 1$; As, $39 \cdot 3$. $\mathrm{C}_{8} \mathrm{H}_{19}$ As requires $\mathrm{C}, 50 \cdot 5 ; \mathrm{H}, 10 \cdot 1$; As, $39 \cdot 4 \%$ ) has b. p. $64^{\circ} / 10 \mathrm{~mm} ., 97^{\circ} / 48 \mathrm{~mm}$.; $d_{4^{\circ}}^{20{ }^{\circ}} 1 \cdot 0193 ; n_{\mathrm{F}^{20}} 1 \cdot 4837 ; n_{\mathrm{D}}^{20^{\circ}} 1-4752 ; n_{0}^{20^{\circ}}$ $1 \cdot 4717$; yield, 23 g . The oxide (Found: As, $36 \cdot 4 . \mathrm{C}_{8} \mathrm{H}_{19} \mathrm{OAs}$ requires As, $\mathbf{3 6} \cdot 4 \%$ ) forms feathery crystals, m. p. $103^{\circ}$; the methiodide (Found : $\mathrm{I}, \mathbf{3 8 \cdot 2}$. $\mathrm{C}_{9} \mathrm{H}_{22} \mathrm{IAs}$ requires I, $38 \cdot 2 \%$ ), needles, m. p. $128^{\circ}$.

Di-n-propyl-n-butylarsine (Found : C, $55.0 ; \mathrm{H}, 10 \cdot 6$; As, $34 \cdot 0 . \mathrm{C}_{10} \mathrm{H}_{23} \mathrm{As}$ requires C, $55 \cdot 0 ; \mathrm{H}, 10 \cdot 6$; As, $34 \cdot 4 \%$ ) has b. p. $88^{\circ} / 10 \mathrm{~mm} ., 117^{\circ} / 36 \mathrm{~mm}$; $d_{4^{\circ}}^{20^{\circ}} 0.9945 ; n_{\mathrm{F}^{*}}^{20^{\circ}} 1.4812 ; n_{\mathrm{D}}^{20^{\circ}} 1.4731 ; n_{\mathrm{C}}^{20^{\circ}} 1 \cdot 4697$; yield, 23 g . The oxide (Found : As, $31 \cdot 9 . \quad \mathrm{C}_{10} \mathrm{H}_{23} \mathrm{OAs}$ requires As, $32.0 \%$ ) forms plates, m. p. $106^{\circ}$; the methiodide (Found : I, 35•5. $\quad \mathrm{C}_{11} \mathrm{H}_{26} \mathrm{IAs}$ requires $\mathrm{I}, \mathbf{3 5 \cdot 3} \%$ ) needles, $\mathrm{m} . \mathrm{p}$. $190^{\circ}$; the ethiodide (Found : I, 34.3. $\mathrm{C}_{12} \mathrm{H}_{28}$ TAs requires I, $33 \cdot 9 \%$ ) needles, m. p. $192^{\circ}$.

Phenyldialkylarsines.-AsPhCl ${ }_{2}$ (Morgan and Vining, J., 1920, 117, 780) reacts with $n$-propyl- and $n$-amyl-magnesium bromide to give phenyldi-npropylarsine (Found : C, 60.5; H, 7.9. $\quad \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{As}$ requires C, $60.5 ; \mathrm{H}, 8.0 \%$ ) and phenyldi-n-amylarsine (Found : As, 25.9. $\quad \mathrm{C}_{16} \mathrm{H}_{27}$ As requires As, $25.5 \%$ ) respectively. The former has b. p. $125^{\circ} / 10 \mathrm{~mm} ., 141^{\circ} / 19 \mathrm{~mm} . ; d_{4^{\circ}}^{20^{\circ}} 1 \cdot 1078$; $n_{\mathrm{F}}^{20^{\circ}} 1.5595 ; n_{\mathrm{IO}}^{20^{\circ}} 1 \cdot 5463 ; n_{0}^{20^{\circ}} 1 \cdot 5409$; the latter has b. p. $174^{\circ} / 10 \mathrm{~mm}$., $186^{\circ} / 16 \mathrm{~mm}$.

4 E 2

Diphenylalkylarsines.-With $n$-propylmagnesium bromide, $\mathrm{AsPh}_{2} \mathrm{Cl}$ (Morgan and Vining, loc. cit.) gives diphenyl-n-propylarsine (Found: C, 66.3; H, 6.2; As, 27.5. $\mathrm{C}_{15} \mathrm{H}_{17}$ As requires $\mathrm{C}, 66 \cdot 2$; $\mathrm{H}, 6 \cdot 3$; As, $27.5 \%$ ); yield, 20 g .; b. p. $177^{\circ} / 10 \mathrm{~mm}$; $d_{4^{20}}^{20^{\circ}} 1 \cdot 1964 ; n_{\mathrm{F}^{20}} 1 \cdot 6220 ; n_{D}^{20^{\circ}} 1 \cdot 6054 ; n_{\mathrm{C}}^{20^{*}} 1 \cdot 5986$. The mercurichloride (Found: $\mathrm{Hg}, 36.7 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{As}, \mathrm{HgCl}_{2}$ requires $\mathrm{Hg}, 36.9 \%$ ) forms prisms, m. p. $152^{\circ}$. Diphenylmethyl-n-propylarsonium iodide (Found: I , $31 \cdot 0$. $\quad \mathrm{C}_{16} \mathrm{H}_{20}$ IAs requires $\mathrm{I}, 30 \cdot 7 \%$ ), on recryst. from $\mathrm{H}_{2} \mathrm{O}$, separates as needles, m. p. $153^{\circ}$.

There is similarly obtained diphenyl-n-butylarsine (Found: C, 66.7; H, 6.4 ; As, $26.0 . \mathrm{C}_{16} \mathrm{H}_{19}$ As requires $\mathrm{C}, 67 \cdot 1$; H, 6.7 ; As, $26.2 \%$ ); yield, 6 g .; b. p. $183^{\circ} / 10 \mathrm{~mm} ., 197^{\circ} / 17 \mathrm{~mm}$. Its methiodide (Found : I, 28-9. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{IAs}$ requires $\mathrm{I}, 29 \cdot 6 \%$ ) has m. p. $140^{\circ}$.

Diphenylisobutylarsine (Found : C, 67.1; H, 6.7; As, 26.2\%) has b. p. $185^{\circ} / 10 \mathrm{~mm}$.; $d_{4}^{20^{\circ}} 1-1819$; yield, 15 g . The hydroxybromide [Found: Br , $21 \cdot 1$. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{As}(\mathrm{OH}) \mathrm{Br}$ requires $\mathrm{Br}, 20.9 \%$ ] crystallised as needles, m. p$116^{\circ}$, from acetone; the methiodide (Found: I, $29.9 \%$ ) forms hexagonal plates, m. p. $152^{\circ}$, from aq. EtOH.

Diphenyl-n-amylarsine (Found: C, 67.2; H, 7.0; As, 24.8. $\mathrm{C}_{17} \mathrm{H}_{21}$ As requires $\mathrm{C}, 68.0 ; \mathrm{H}, 7 \cdot 1$; As, $24.9 \%$ ) has b. p. $194^{\circ} / 10 \mathrm{~mm}$., $d_{4^{20}}^{20^{\circ}} 1 \cdot 1617$; $n_{\mathrm{F}}^{20^{\circ}} 1.5993 ; n_{\mathrm{D}}^{20^{\circ}} 1.5846 ; n_{\mathrm{C}}^{20^{\circ}} 1.5786$. Diphenyl-dl-amylarsine (Found : As, $25.0 \%$ ) boils at $195^{\circ} / 10 \mathrm{~mm} . ; d_{4^{20}}^{20} 1 \cdot 1624$. Yields of both, 10 g .

## Saturated Vapour Pressures, Molecular Volumes, and Refractivities of Tertiary Arsines.

The following table incorporates results obtained by the authors, and by previous investigators, of whom the chief have been Landolt (Annalen, 1854, 54, 301); Winmill (J., 1912, 101, 718); Turner, Burrows, Roberts, and Bury (J., 1920, 117, 1378; 1921, 119, 426 ; 1926, 1443) ; Steinkopf, Schwen, Donat, and Jaeger (Ber., 1921, 54, 1437; 1922, 55, 2597); Mills and Raper (J., 1925, 127, 2479); Gryszkiewicz-Trochimowski, Zambrzycki, and Sikorski (Rocz. Chem., 1926, 6, 794; 1927, 7, 54 ; 1928, 8, 250 ; Bull. Soc. chim., 1927, 41, 1570).

As will be seen from the table, for arylarsines containing one or more complete benzene rings in the molecule, the mol. vol. at $20^{\circ}$, $V_{20}$, is approx. given by the equation, $V_{20^{\circ}}=50 \cdot 50+63 \cdot 72 r+$ $16 \cdot 128 c$, wherein $r$ denotes the number of such rings, and $c$ the number of additional C atoms in saturated alkyl groups. For instance, tri- $\beta$-phenylethylarsine contains 3 rings and 6 additional C atoms, whence the calc. value of $d_{4_{4}^{* *}}$ is $1 \cdot 1528$ (obs., $1 \cdot 1545$ ). For aliphatic arsines containing 3 saturated alkyl groups, including cases where such groups are iso, the mol. vol. is given by $V_{20^{\circ}}=$ $57 \cdot 26+16 \cdot 128 C$, wherein $C$ denotes the total number of carbon atoms in the mol.

The b. p. $/ 10 \mathrm{~mm}$., $t_{10 \mathrm{~mm} .,}$ of an arsine containing $3 n$-alkyl groups is approx. given by $t_{10 \mathrm{~mm}}=18 \cdot 30 M^{0.555}-273 \cdot 1$, where $M$ denotes the mol. wt. of the arsine. If 1 phenyl group and $2 n$-alkyl groups

|  | B. p. $/ 1$ | mm . | $\begin{aligned} & \text { Mol. vol., } \\ & \text { c.c. at } 20^{\circ} \text {. } \end{aligned}$ |  | [ $\left.R_{L}\right] \lambda$, found. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arsine. | Found | Calc. | Found. | Calc. | F. | D. | C. |
| Trimethyl | $-30^{\circ}$ | $-12^{\circ}$ | 106.6 | $105 \cdot 6$ |  |  |  |
| Triethyl | +36 | $+35$ | 141.2 | $154 \cdot 0$ | $43 \cdot 18$ | $42 \cdot 47$ | $42 \cdot 20$ |
| Tri-n-propyl | 75 | 77 | 198.5 | $202 \cdot 4$ | $57 \cdot 08$ | $55 \cdot 83$ | $55 \cdot 50$ |
| Tri-n-butyl | 116 | 116 | $247 \cdot 6$ | $250 \cdot 8$ | $70 \cdot 83$ | $69 \cdot 81$ | $69 \cdot 42$ |
| Tri-n-amyl | 150 | 151 | $294 \cdot 1$ | $299 \cdot 2$ | $84 \cdot 21$ | 83.06 | $82 \cdot 61$ |
| Tri-n-hexyl | 181 | 184 | 341.0 | $347 \cdot 6$ | $98 \cdot 16$ | 96.87 | $96 \cdot 44$ |
| Tri-n-heptyl | 202 | 216 | $390 \cdot 3$ | $395 \cdot 9$ | 111.63 | $110 \cdot 04$ | $109 \cdot 48$ |
| Tri-n-octyl | 243 | 246 | $443 \cdot 2$ | $444 \cdot 3$ | 126.27 | $124 \cdot 68$ | 124-02 |
| Triisobutyl | 94 |  | $255 \cdot 3$ | $250 \cdot 8$ | 71-67* | 70.66* | 70.24* |
| Tri-dl-amyl | 135 | - | $299 \cdot 8$ | $299 \cdot 2$ | 85•19* | 84.03* | 83-55* |
| Triisoamyl | 142 | - | 301-6 | $299 \cdot 2$ | 85•71* | 84.52* | 84-02* |
| Triisohexyl | 175 |  | $352 \cdot 8$ | $347 \cdot 6$ | 99•72* | 98-42* | 97-88* |
| Dimethylethyl | - 5 | $+4$ | $122 \cdot 0$ | 121.8 | - | - | - |
| Dimethyl-n-propy | +18 | $+20$ | $144 \cdot 8$ | $137 \cdot 9$ | - | - |  |
| Methyldi-n-propyl | 42 | 50 | $170 \cdot 1$ | $170 \cdot 2$ | - | - |  |
| Methyldi-n-butyl | 77 | 77 | $203 \cdot 6$ | $202 \cdot 4$ | - | - | - |
| Methyldi- $n$-amyl. | 104 | 103 | 236-6 | $234 \cdot 7$ | - |  |  |
| Methyldi-n-hexyl | 134 | 128 | $269 \cdot 2$ | $266 \cdot 9$ | 76-39* | 75-38* | 74.97* |
| Methyldiisobutyl | 57 | - | $203 \cdot 8$ | $202 \cdot 4$ |  |  |  |
| Diethyl-n-butyl | 64 | 64 | $186 \cdot 3$ | $186 \cdot 3$ | 53-32* | 52.52* | 52.19* |
| Ethyldi-n-propyl | 58 | 64 |  |  |  | - |  |
| Ethyldi-n-butyl | 93 | 90 | $218 \cdot 8$ | 218.5 | 62.16* | 61-37* | 61.03* |
| Ethyldi-n-amyl | 119 | 115 | $249 \cdot 0$ | $250 \cdot 8$ |  | - |  |
| Di-n-propyl-n-butyl | 88 | 90 | $219 \cdot 3$ | $218 \cdot 5$ | 62-44* | 61-54* | 61-15* |
| Dicyclohexylmethyl | 136 | - | $229 \cdot 7$ | - | 71.91* | 70.96* | 70.56* |
| Dicyclohexylethyl | 161 | - | - | - | - | - | - |
| Triallyl ............. | 76 | - | $179 \cdot 9$ | - | $56 \cdot 66$ | $55 \cdot 55$ | $55 \cdot 04$ |
| Phenyldimethyl | 80 | 87 | - | - | $48 \cdot 27$ | $47 \cdot 25$ | $46 \cdot 80$ |
| Phenyldiethyl . | 106 | 103 |  | - | $58 \cdot 89$ | $57 \cdot 72$ | 57.24 |
| Phenyldi-n-propyl | 125 | 127 | 214.9 | 211.0 | $69 \cdot 44$ | 68.08 | $67 \cdot 52$ |
| Phenyldi- $n$-amyl . | 174 | 172 | - | - | - | - | - |
| Phenylmethylethyl | 92 | 90 | - | - | - | - | - |
| Phenylmethyl-n-propyl | 102 | 103 | - | - | - | - | - |
| Phenylethyl-n-propyl. | 114 | 115 | - | - | - | - | - |
| $p$-Tolylmethylethyl | 108 |  |  |  |  |  |  |
| Diphenylmethyl | 157 | 155 | $192 \cdot 0$ | 194.1 | $69.80 \dagger$ | $68 \cdot 23 \dagger$ | $67.58 \dagger$ |
| Diphenylethyl. | 163 | 165 |  | - | 74.78 | $73 \cdot 13$ | $72 \cdot 45$ |
| Diphenyl-n-propyl | 177 | 175 | $227 \cdot 4$ | $226 \cdot 3$ | $80 \cdot 09$ | $78 \cdot 36$ | $77 \cdot 64$ |
| Diphenyl-n-butyl | 183 | 184 |  | - | - |  | - |
| Diphenyl-n-amyl | 194 | 194 | $258 \cdot 4$ | $258 \cdot 6$ | 88.31 | 86.55 | $85 \cdot 82$ |
| Diphenyl-dl-amyl | 195 | - | $258 \cdot 2$ | $258 \cdot 6$ | - | - | - |
| Diphenylisobutyl | 185 | - | $242 \cdot 1$ | $242 \cdot 4$ | - | - |  |
| o-Tolyldimethyl | 93 | - | $163 \cdot 4$ | $162 \cdot 6$ | $54 \cdot 65$ | 53.55 | 53.09 |
| $m$-Tolyldimethyl | 88 | - | $164 \cdot 6$ | $162 \cdot 6$ | $54 \cdot 73$ | 53.59 | $53 \cdot 11$ |
| $p$-Tolyldimethyl | 95 | - | - | - | - | - | - |
| $p$-Tolyldiethyl .. | 118 | - | - | - | - | - | - |
| Di-o-tolylmethyl | 175 | - | - | - | - | - | - |
| Di-p-tolylmethyl | 174 | - | 226.5 | $226 \cdot 3$ | $80 \cdot 29$ | 78.51 | $77 \cdot 77$ |
| Benzyldimethyl | 115 | - | - | - | - | - | - |
| Dibenzylmethyl | 185 | - | 224.8 | $226 \cdot 3$ | $80 \cdot 33$ | $78 \cdot 53$ | $77 \cdot 78$ |
| $m$-Xylyldimethyl | 101 | - | 176•1 | $178 \cdot 7$ | 58.55 | $57 \cdot 36$ | $56 \cdot 87$ |
| $p$-Xylyldimethyl | 120 | - | $176 \cdot 6$ | $178 \cdot 7$ | 58.88 | $57 \cdot 68$ | $57 \cdot 19$ |
| $\beta$-Phenylethyldimethyl | 103 | - | $180 \cdot 7$ | $178 \cdot 7$ | $58 \cdot 74$ | $57 \cdot 63$ | $57 \cdot 16$ |
| Di- $\beta$-phenylethylmethyl | 212 | - | $260 \cdot 3$ | $258 \cdot 6$ | $88 \cdot 87$ | 87.15 | $86 \cdot 45$ |
| Tri- $\beta$-phenylethyl ..... | 281 | - | 337.9 | $338 \cdot 4$ | - | - | - |
| a-Naphthyldimethyl | 157 | - | - | - | - | - | - |
| $\beta$-Naphthyldimethyl | 177 | - | $178 \cdot 5$ | - | 66.94 | $65 \cdot 14$ | $64 \cdot 39$ |

* See p. 2292.
$\dagger$ Gryszkiewicz-Trochimowski and Sikorski (Bull. Soc. chim., 1927, 41, 1574) give $69 \cdot 80,68 \cdot 21$, and $67 \cdot 58$, respectively.
are present, the relationship becomes $t_{10 \mathrm{~mm} .}=25 \cdot 96 M^{0.500}-273 \cdot 1$, and if 2 phenyl groups and $1 n$-alkyl, $t_{10 \text { ma. }}=43 \cdot 90 M^{0 \cdot 4144}-273 \cdot 1$. These relationships are of the type proposed by Walker (J., 1894, 65, 193). The extent of agreement of b . p.'s thus calculated with those observed is indicated in the table.

For pressures from 5 mm . to 50 mm ., a range which includes pressures usual in the distillation of organic arsines, the saturated v. p., $p \mathrm{~mm}$., of tri- $n$-amylarsine is related to temp., $t^{\circ}$, by the equation, $8 \cdot 6780-\log _{10} p=3256 \cdot 1 /(t+273 \cdot 1)$. This equation permits of the calculation of $b$. p.'s of arsines under pressures other than $10 \mathrm{~mm} .$, by the assumption that the ratio of the abs. b. p.'s of two arsines under one press. is equal to that under another. For instance, taking tri- $n$-amylarsine as a standard of reference, the calc. b. p.'s are $151^{\circ} / 10 \mathrm{~mm} ., 184^{\circ} / 36 \mathrm{~mm}$., $164^{\circ} / 17 \mathrm{~mm}$., and $167^{\circ} / 19 \mathrm{~mm}$., whilst the b. p.'s $/ 10 \mathrm{~mm} ., t_{10}$ mm., of di-n-propyl-n-butyl-, diphenyl- $n$-butyl-, and phenyldi-n-propyl-arsine given by the previous equations are $90^{\circ}, 184^{\circ}$, and $127^{\circ}$ respectively; whence are calculated, as indicated, the following b. p.'s; di-n-propyl-nbutylarsine, $118^{\circ} / 36 \mathrm{~mm}$. (obs., $117^{\circ}$ ) ; diphenyl- $n$-butylarsine, $198^{\circ} /$ 17 mm . (obs., $197^{\circ}$ ); phenyldi- $n$-propylarsine, $142^{\circ} / 19 \mathrm{~mm}$. (obs., $141^{\circ}$ ).

Comparison of the b. p. of an isoalkylarsine with that of the corresponding $n$-alkyl compound shows that, in general, branching of the carbon chain confers increased volatility, although the influence becomes less marked with increased mol. wt. and with the presence of aryl groups.

The general effect of increased mol. wt. in lowering volatility and density in the case of arsines is obvious throughout the table, and although good agreement is usually found between the results of direct determinations and the values calculated by the relationships here given, yet the lowest members of the homologous series show the greatest discrepancies.

The values of $\left[R_{L}\right]$ asterisked in the table include all the nonexaltative systems investigated in the present work, and, after the deduction from them of the values of the atomic refractivity of C and H (Eisenlohr, Z. physikal. Chem., 1910, 75, 585) there are left consistent values for the atomic refractivity of arsenic in these compounds, of which the following are the mean : for $\mathrm{F}, 12 \cdot 30$; for $D, 11.96$; for C, 11.83 .

As Gryszkiewicz-Trochimowski and Sikorski (Bull. Soc. chim., 1927, 41, 1570) have already indicated, the presence of aryl groups, in general, causes optical exaltation, and this constitutive effect precludes the inclusion of calculated values of mol. refractivity in the above table.

EXPERIMENTS ON THE SYNTHESIS OF ANTHOCYANINS. PART XV. 2293
In conclusion, it has to be pointed out that the regularities indicated in the present work do not extend to cacodyls or to arsepidines.

The authors are indebted to the Chemical Society for grants.
University College, Cardiff. [Received, May 25th, 1932.]


[^0]:    Methyldialkylarsines.-These arsines were obtained by the action of Grig. nard reagents on $\mathrm{AsMeI}_{2}$, which was prepared by Auger's method (Compt.

